欢迎来到培训无忧网!

全国切换

咨询热线 400-001-5729

位置:培训无忧网 > 新闻资讯 > 语言培训 > GRE考试 >  gre考试内容中数学解题技巧有哪些?

gre考试内容中数学解题技巧有哪些?

来源:培训无忧网 发布人:云朵

2022-03-14 13:58:15|已浏览:3880次

gre考试内容中数学解题技巧有哪些?

      下面为同学们整理了gre考试内容数学解题技巧,供考生参考学习。

1、数形结合

      数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识、数形结合的转化,可以培养思维的灵活性、形象性,使问题化难为易,化抽象为具体。通过“形”往往可以解决用“数”很难解决的问题。

2、换元

     换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果。换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的。

3、转化与化归

      转化与化归的思想方法是数学中最基本的思想方法。所谓转化与化归思想方法,就是在研究和解决gre考试内容中有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过转化为简单的问题,将难解的问题转化为容易的问题,将未解决的问题变换转化为已解决的问题。

      数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段,所以说转化与化归是数学思想方法的灵魂。

4、函数与方程

      函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题。方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决gre考试内容问题的目的。

5、分类讨论

      所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答。实质上分类讨论是“化整为零,各个击破,再积零为整”的策略。分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论。”

      注:尊重原创文章,转载请注明出处和链接 https://www.pxwy.cn/news-id-25054.html 违者必究!部分文章来源于网络由培训无忧网编辑部人员整理发布,内容真实性请自行核实或联系我们,了解更多相关资讯请关注GRE考试频道查看更多,了解相关专业课程信息您可在线咨询也可免费申请试课。关注官方微信了解更多:150 3333 6050

留下你的信息,课程顾问老师会一对一帮助你规划更适合你的专业课程!
  • 姓名:

  • 手机:

  • 地区:

  • 想学什么:

  • 培训无忧网
免 费 申 请 试 听
提交申请,《培训无忧网》课程顾问老师会一对一帮助你规划更适合你的专业课程!